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S U M M A R Y  
When an aircraft has developed a spin, the pilot is usually concerned not only with recovering from the spin but doing 
so with minimum loss of height. This paper is mainly concerned with the mathematical formulation of this problem, 
including the simplifications that can reasonably be made. 

The Pontryagin minimum principle is used to obtain necessary conditions for a solution to the problem. The amount 
of computation required may be prohibitive; on the other hand, if certain simplifying assumptions may be regarded 
as Valid, it is indicated how a solution may be obtained. 

The theory is restricted to the case in which three controls are actively used : aileron, elevator and rudder. However, 
further controls may easily be included, with only a slight increase in complexity. 

1. Introduction 

The spinning of aircraft and the control movements necessary to recover from the spin have 
been the subject of many detailed studies [1], [21, [3], [4]. It is also p~'ssible to obtain good 
approximations to spinning motions with relatively little mathematical detail [5]. The main 
emphasis in such studies is usually centred on the question of whether "normal recovery action" 
is satisfactory, the objective being to recover from the spin as quickly and smoothly as possible. 
The definition of recovery cannot be exact. An aircraft may be considered to have recovered 
from a spin when the incidence of the centre section of the wing is below the stall, though this 
condition may be accompanied by large residual angular velocities in roll and yaw. Another 
definition may include some restrictions on these angular velocities. 

In this paper, emphasis is placed upon the loss of height during the attempted recovery from 
the spin. This parameter is certainly important and may be critical. The definition of recovery 
is left open to the extent that, in the present formulation of the problem, different definitions 
merely imply different sets of terminal conditions. 

2. Equations of Motion 

A complete list of notation is given at the end of the paper. 
The general equations of motion of an aircraft are" [6] 

u + q w -  rv - gx = X / m ,  

v + ru - p w - g y  = Y / m ,  

w + pv - qu - gz = Z / m ,  

+ d~(q 2 - r 2) + ex(~+ pq) 

+ ey (r 2 - p2) + f ,  (~ + qr) 
r + L  (p~-q2)  + d~(4 + rp) 

The kinematic relationships are: 

p =  ~ - ~ s i n  0, 

q = 0 cos ~b + ~ sin q5 cos 0, 

r = - 0  sin ~b + ~ cos q5 cos 0. 

+ f~ ((t - rp) + b~qr + c ~ q -  cr~r = L / I x ,  

+ d r ( ~ -  pq) + by rp + c ~ r r -  c~rP = M/I~, ,  

+ e~ ([~ - qr) + b~ pq + cy~ p -  Cxzq = N / I ~ .  

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

(7) 
(S) 
(9) 
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314 G. R. Walsh 

The following assumptions are made throughout the subsequent work: 
The engine momentum parameters c~, etc. are all zero. 
The product of inertia parameters d~, G,f~, etc. are all zero. 

X = L s i n c ~ - D c o s ~ + T c O S 0 T ,  

Y = Ye-.I-Y', 

Z = - L cos c~- D sin c~- T sin Or, 

L = Leq-If,, 

M = M e + M ' ,  

N = N e + N ' ,  

where 

T = T~+ T' 
and 

(10) 

(11) 

(12) 

(13) 

(14) 

05) 

(16) 

w u (17) sin e - (u 2 + w2)~, cos e = (u 2 + w2)~. 

The datum values, denoted by suffix e, refer to a steady spin defined by 

12=Ue, V = V e ,  P = P e ,  q = q e ,  r = r  e,  

q~=~be, 0 = 0 e ,  ~ = ~ e ,  0t=0te,  T = T e .  

Note that the relatively small terms X~q, Xc jv ,  X. t l ,  Z~q, Z ~ v  and Z.t /have been neglected. 
Substituting the datum values into equations (1)-(6) and (10)-(17) we obtain 

q e % - G G + g  sin 0 e = (Le sin e e - D e  cos ee+ Te cos Or)/m, (18) 

reU e -- peWe--g Sin q5 e COS0e = Y~/m, (19) 
PeVe -- qeUe - g COS ~b e cos  0 e - ( ' L e  c0s  O~e-De sin % - T e  sin Or)/m, (20) 

bxqer e = ge / I x  , (21) 

brr ~ pe = Me~I , ,  (22) 

b~peq e = Ne / I  ~ . (23) 

Equations (21)-(23) may be regarded as equations to determine the steady applied moments 
Le, Me, N e in terms of the angular velocity components in the steady spin Pe, %, re" 

From equations (7), (8), (9), we have 

Pe = --I]/e sin Oe, qe---= @e sin q5 e COS 0e, r e = ~/e COS ~e COS 0 e . (24) 

Substituting from equations (24) into equations (18)-(20), and using equation (17), we obtain 

W e Le - ue De gPe Te cos Or, (25) 2 2 ~ = qeWe-- re Ve 
1Tl(Ue +We)  ~]e l'll 

gqe (26) re= re Ue_ Pe We -- - -  
m ~1 e ' 

- -  U e Le - -  W e De 
2 2 ~ = PeG--qeUe -- ~ + ~ sin Or. (27) 

m(u  e @We) I~e m 

Equations (25)-(27) determine the steady lift, drag and sideforce Le, De, Ye in terms of 
Ue, Ve, We, Pe, qe, re, Oe, Te �9 

Next, we require expressions for L, D and the primed quantities in equations (10)-(15). In 
equations (10) and (12), assume for simplicity that 

L =  pSV 2 D =  pSV 2 (28) 
where 
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Optimal spin recovery 315 

V 2 = u 2 + w 2 . (29) 

This assumption has been shown to be valid for large-disturbance manoeuvres [7]. It is assumed 
that C~, and CD are known functions ofcq and that p is a known function of altitude, i.e. p = p (h), 
where 

h = he -  hL(t), (30) 

and hL(t) is the height lost in time t, given by 

X' hL(0 = sin sin cos  ( )cos (31) 
0 

According to Perkins and Hage [8], 

P =  Po 1 - ~ ]  , (32) 

within the troposphere, where 

Po = 0.002378 slug/ft3., 

6 = 0.003566~ 

To = 518.4~ 

R = 53.36 ft./~ 

For the general motion, let 

u=ue+u ' ,  v=ve+v ' ,  w = w e + W ,  t (33) 
p=p~+p ' ,  q = % + q ,  r = r e + r ,  = e+ , 

and assume 

Y'= Y v', (34) 
12 = L~ v' + Lpp' + L ~ '  , (35) 

M = M e + M ' - -  �89 2 C~(~)+Mq (qe+q' )+M,(~e+rf ) ,  (36) 

N' = N~v' + N~r' + N:(' , (37) 

Where ~', ~/', (' are the control angles measured from the datum values, i.e. 

~ = Ce-~-r /'] = l'~e --t- t / '  , ff = ~ e - b ~ '  . (38)  

In the steady spin we must have 

Ye = Y~Ve, (39) 

Le = Lvve + Lppe + Lr162 ' (40) 

Me = -~peSlV~l 2 Cm(c~e ) +Mqq~+M,11e, (41) 

N,, = Nvv e + Nrr e + N f~  , (42) 

~- ~lOe S g e C L (O~e) , L~ ~ 2 (43) 
De = 1  2 ~IOeSV e CD(O;e). (44) 

In equation (36), C,,(c 0 is the pitching moment  coefficient for ~/=0 and q=0.  
The datum conditions are given by equations (21)-(23), (25)-(27)and (39)-(44). Eliminating 

the forces Y~, Le, De and the moments Le, Me, Ne between these equations, we obtain 

1 2 gPe Te cos Or, (45) 2peSVem [CL(O~e) sin O~e--CD((Xe) COS 0.r = qeWe--reVe -- ~e  -- ~ 

Y v Ve = reUe--peWe __ Oqe (46) 
m ~1 e ~ 
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316 G. R. Walsh 

In 

1 2 (it e 
-2peSVem [--CL(ae) COS ae--CD(ae)sin ae] = PeVe--qeUe -- ~ "[- Tern sin Or, 

1 
-~ [LvVe+ Lp Pe+ Lr = bxqere, 

1 [�89 ] = byrePe [y 

1 [Nvve+N~re+N;~e] = bzpeqe " 

equations (45)-(50), we have the relations 

Ve +We U e 

(47) 

(48) 

(49) 

(50) 

(51) 

we ue (52) sin ae - (u2 + w2)~, cos a~ - (u~ + w~) -~" 

From equations (24), we find 

~e = sgn(re)(P~ +qe 2 + re2) ~ , (53) 

since both ~e and 0e are assumed to be restricted to the range ( -n /2 ,  n/2). 
In a steady spin, the dynamical equations (45)-(50) must be satisfied, while equations (24) 

provide the necessary kinematic relationships. It may be said [1] that 
(i) the balance of vertical forces determines the rate of descent, 

(ii) the balance of pitching moments determines the rate of rotation, 
(iii) the balance of rolling moments determines the sideslip, 
(iv) the balance of yawing moments determines the possible combinations of rate of rotation, 

sideslip and incidence for a steady spin. If the yawing moments cannot be balanced then no 
steady spin is possible. 

In the sequel, we shall assume that the conditions for a steady spin are satisfied. 
Returning to the equations of motion (1)-(6) and using equations (10)-(16), (28) and (33)-(42), 

we obtain 
1 

u = - q w + r v - 9  sin 0 + -- [�89 sin a - C o  cos a )+  T cos Or], (54) 
m 

YvU v = - r u + p w + g  sin q~ cos 0 + ....... 
in 

w = - p v + q u + 9  cos q5 cos 0 - 1 [�89 L COS a - t -C  O sin a ) - t - T  sin OT] 
m 

1 (Lvv+Lpp+Lr p = -bxqr  + ~ 

1 (�89 q = -byrp  + ~ 

(55) 

(56) 

(57) 

(58) 

1 
= -bzpq  + ~ (N~v+Nrr+Nr (59) 

We also need the two kinematic equations obtained by eliminating ~ between equations 
(7), (8) and (9). These are 

q~ = p + q sin ~b tan 0 + r cos q5 tan 0,  (60) 

0 = q cos q~-r  sin ~b. (61) 
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Optimal spin recovery 317 

Equations (54)-(61) are essentially eight equations for the eight unknowns u, v, w, p, q, r, qS, 0. 
It is assumed that the function C,,(e) is known, as well as the functions Ct(e) and Co(a). 
However, in the case when air density is assumed to vary with height, we also need the equation 

/~ = u sin 0 - v  sin q5 cos 0 - w  cos q5 cos 0,  (62) 

which comes from equations (30) and (31). Then equations (54) (62), together with equations 
(29) and (32), form the complete set of state equations. The controls are 4, q, (, r .  

3. Optimisation Problems 

It is now possible to formulate a series of optimisation problems by assuming various initial 
and final conditions for the state variables. In the most general case the problem is as follows. 

Given the state equations (54)-(62), with initial conditions 

u = u  e, v = v . . . . .  0 = 0e, h = he, 

find the controls 4(t), q(t), ~(t), r(t) which transfer the initial state to the final state with 
minimum loss of height. The constraints on the controls are assumed to be 

141<4~t, ~/,,_-<t/_-<t/M, I(]_-<(M, O<-T<-TM, (63) 

where 
t/m < 0, r/~t > 0 .  

It is assumed for simplicity that there are no constraints on the state variables; the modifica- 
tions to the Pontryagin principle when such constraints are included are described in reference 
[9]. The terminal time tl is free. Thus we have to minimise hm(tl), given by equation (31). 

Several sets of final conditions on the state variables may be assumed; these will be considered 
later (Section 4) since they only affect the terminal transversality conditions. 

The Hamiltonian [10] is 

H = ( - u  sin O+v sin q5 cos O+w cos ~b cos 0)(1 --Ph) 

+ -qw+rv-9 sin 0 + -- {�89 sin c~-Co cos e )+  T cos Or} Pu 
m 

+ (-ru+pw+g sin (~ cos O + ? ] p v  

+ [-pv+qu+gcosq~cosO---ml{�89 p"' 

f 1 (L~v+Lpp+Lr + L--bxqr + ~ PP 

+ I-b,  rp + ~ (~pSlVZ C,,+ Mqq+ M,q)l Pq 

F 1 (Nvv+N~r+N~()lpr + L-- b~ pq + ~ (64) 

+ [p + q sin q5 tan 0 + r cos q~ tan 0] p~ 

+ [q cos q5- r sin qS] Po. 

The coefficients of 4, t/, ~, T, respectively, in H are: 

Lcpp M.pq N~p~ 1 (pu cos 0 r - P ~  sin Or). 
I x '  I ,  ' I~ ' m 

Since L~, M. and N~ are all negative, the Pontryagin minimum principle [10] states that the 
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318 G. R. Walsh 

optimal controls are 

= sgn (pp)~M, (65) 

t/ = ~/M if sgn (pq) > 0 ,  
= t/~, if sgn (pq) < 0 ,  

i.e. tl = �89 [ (rlM + rlm) + sgn (pq) (rIM--rlm) ] , (66) 

= sgn (p,.) ~ t ,  (67) 

T =  0 if sgn (p,, co s 0 y - p ~  sin 0T) > 0 ,  

= TM if sgn (p, cos Or--pw sin 0T)< 0 ,  

i.e. T = �89 - sgn (p, cos 0 r -  p,~ sin Or)] TM �9 (68) 

Also, H(t)=0 at all points of an optimal trajectory: this condition gives an equation for q. 
The adjoint equations, lo,= -OH/Ou, etc. are: 

PS[2u(C r sin c~- Co cos c~) lo. -- ( l - p , , ) s i n  o - 

+ V2 (?Cr. OCD 0(sin e) 0(cos e)~]p. 
\ -~-u sin ~ - N-u  cos ~ + cL au c~ ~ / ]  

Eq ,I + r p , -  - ~ 2u (Cr cos  e + CD sin c~) 

e c o  a(cos ~) ~(s i .  ~)~ (] + VZ (OCL cos c~ + sin e + C/. - -  + CD 
\ ~u ~ ~u ~ ] t J  pw 

21, uCm+ ~uu J pq' (69) 

lo, --- - (1 --Ph) sin r cos O--rp, Y~ Lv Nv (70) 

PS {2w(C~ sin ~-Co c~ ~) 10 w = -  (1--ph) c o s r  q +~mm 

 ,cos )/1 \~w-w s i n ~ - ~ c o s c ~ +  Cz ~w CD ~w P" 

pS 
]2w(CL cos ~+Co sin ~) - P P " +  2m 

+ V2 (OC L ~C D ~(COS e) ~(sin e)~] 
\ 0 w  c o s ~ + ~ s i n e +  CL O ~  + C D ~ w  /]Pw 

.st[ 0c,,,] 
2wCm+ t~w ] p"' (71) 

Lp 
lop = - wp~+vpw - ~ pp+byrpq+b~qp,-pr (72) 

lo~ = wp,-up~ + b~rpp - ~ po + b~ppr-po sin r tan O-pc cos r  (73) 

N, 
lo~ = - vp,+up~+b~qpp+byppq - -~ p~-p~ cos r tan O+po sin ~b, (74) 
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/5~ = - (v cos q ) -w sin ~b) cos 0 (1 -Ph) - gP~ cos q) cos 0 

+gPw sin q~ cos O-(q cos ~b-r  sin q~) tan Op4)+(q sin qS+r cos (o)p o , 

/5o= 

(75) 

(u cos O+v sin ~b sin O+w cos q5 sin 0)(1 --Ph)+gP, COS 0 

+gP~ sin 0 sin O+gp~ cos ~b sin O-(q sin oS+r cos qS) secZ0pe, (76) 

OH de 
~pdh _(1  1) 

m lc= l ~ ; ~  - P SV221 {(CLsinc~_CDCOSa)p,_(CLCOSa+CDSina)p~ } + ~ P q J _  To-6h (77) 

From equations (17) and (29), we fred 

v 2  O(si~ ~) _ v ~  ~ (cos  ~) 
Ou Ow - u sin a = - w  cos ~, (78) 

v 2 ~(cos  ~) , v 2 0(s in  ~) 
~u - w sin a 0 ~  - u cos c~, (79) 

V 2 OCL -- --w--3CL V 2 ~CL ~CL - u (80) 
0u 0~ ' ~w &~ ' 

with similar expressions involving CD and Cm. By means of equations (78)-(80), derivatives 
on the right-hand sides of equations (69) and (71) may be expressed in terms of the familiar 
aerodynamic quantities ~CL/Oe, OCm/O~, etc. Equations (69) and (71) become, respectively, 

pS [2U(CL Sin o~-C D cos ~) 15, = (1 --Ph) sin 0 -- 2m 

+ r p ~ -  q-2mm 

 sl[2 
2Iy uCm-w 0~ ] pq' (81) 

[- PS {2w(CL SIn ~-CD cos ~) /sw = - (l - p h )  cos  ~ cos  0 -  q + 

c o s  § 

pS W(CL c o s ~ + C v  s inc0+u  Co + ~ j  c o s a -  CL -- sin ~ Pw 
+~mm u ~ /  

pst[2 aco] 
2Iy wCm + u Oc~ J p" " (82) 

4. Transversality Conditions 

We now consider three specific definitions of spin recovery, and derive the corresponding 
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terminal transversality conditions for the associated optimisation problems. Final values of 
some of the state variables (or relationships between these final values) have to be specified. 
Three typical sets of final conditions are: 
(a) Ul~--uf, / ) l=0,  Wl=Wf ,  p l = 0 ,  q l = 0 ,  r l = 0 ,  qSl=0, 

Ot=ay, i.e. tan 01=wf/uy. 
(b )v t=0 ,  p t = 0 ,  q l = 0 ,  r t=0 ,  ~bl=0, ut tan 0 1 - w i = 0 .  
(c) ul=uy, vt=0 ,  Wl=Wf, p~ +r~=c, q~l=0.  

The corresponding terminal transversality conditions are given by 

9-kv.~ (~gi 
Pi = 2_. ~i ~xt i= =1 

for arbitrary ~i, where 

gi(xl) =0,  i=  1, 2 . . . . .  9 - k  

are the terminal conditions on the state variables and Pl is the vector of adjoint variables 
evaluated at t = tl. 

This leads to: 
(a) The final values of all the adjoint variables except Ph are arbitrary, and 

Phi = 0 .  (83) 

(b) Pvl, Ppl, Pql, P~i, Poi are arbitrary. 
Pul+Pwl tan 01=0,  (84) 
Pol +pwlul  sec 2 01 =0 ,  (85) 
Phi = 0  (86) 

(c) P,1, Pva, Pwa, Pei are arbitrary. 
riPpl-PiP~l =0 ,  (87) 
Pqi =Pot =Phi = 0 .  (88) 

Note that in each case we have a total of nine terminal conditions on the state and adjoint 
variables. There are also nine initial conditions on the state variables. The mathematical 
problem is to solve the eighteen first order differential equations (54)-(62), (70), (72)-(77), 
(81) and (82) subject to these eighteen initial and terminal conditions, the expressions (65)-(68) 
for the control variables ~, ~/, ~, T being first substituted into equations (54) and (56)-(59). 

The problem just formulated is the classical two-point boundary-value problem of the 
calculus of variations. Direct methods of solving this problem are available only when the 
state equations are linear [11]. Thus we are forced to rely on trial and error methods in order 
to obtain an optimal solution. The method of "backing out of the origin" [12], [13], or more 
correctly in the present case "backing out of the terminal state", can be used when the number 
of state variables is not too great. This method is illustrated for a simplified spinning problem 
in the next Section. 

5. Simplified Problem 

In order to make the presentation of the method of solution more concise, we now make the 
additional assumptions that u, T and p remain constant throughout the motion, and that V 2 
remains constant. (The last condition is consistent with constant u if w ~ u). 

The state variables are now 

v , w , p , q , r , ( ~ , O .  

The state equations are (55)-(61) ; the control equations are (65), (66), (67); the adjoint equations 
are (70), (72)-(76) and (82), with pu=pn=0 throughout. The transversality conditions are 
slightly changed since pu and Ph no longer exist. Referring to Section 4, in case (a) there is now 
no transversality condition, in case (b) only equation (85) survives, and in case (c) the equation 
Phi = 0  is omitted from equations (88). 
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It is customary in aerodynamic calculations to write the equations o f  motion in non-dimen- 
sional form. In the present problem, it is convenient to non-dimensionalise both the state and 
adjoint equations, together with the boundary conditions. The standard British system of 
non-dimensionalisation known as the "dynamic-normalised form" [6~ is used. Thus we obtain 
the following system of equations: 

d~ 
- ~ + / 3 ~ + 0  sin 05 cos 0 - 3 9 ~ ,  (89) 

di 

d~ 
d~ 

- /3~ + @ + 0 cos 05 cos 0 -  (CL COS C~ + Co sin a + T cos Or), (90) 

@ 
d~ 

A A  A A A A A 

- b x q r - l ~ v - l p p - l r  sgn (pp) ~M, (91) 

dO ^^ ~C,. ~ ^ r~, 

d~ 
- byrp + mqq -g- [(q~t § q,.) + sgn (pq) (t/M-- q.~)], (92) 

iy 

d~ 

d~ 
- b ~ / 3 q - ~ - ~ P - f ~  sgn(pr)~u, (93) 

d05 dt - / 3 + 4  sin 05 tan 0+P cos 05 tan 0,  (94) 

dO 
d~ - O cos 05-~ sin 05, (95) 

v 

dE 

@w 

^ A 

- sin 05 cos O+),p~+PPw+l~pv+~vPr, (96) 

V 
- cos 05 cos O-p/3v+ ]2k(CL cos c~+Co sin c~) 

d~ 

] ~Cm+Ct pq, 
iy a7 J 

(97) 

(98) 

dpq 
d~ 

A A A  A ^ ^ A  A 

- up~+bxrpv+mqpq+bzppr-po sin 05 tan 0 - P 0  cos 05, (99) 

d/3Y ^ A A A A A ^ di - up.+bxqpp+bypp~+nrpr-PO cos 05 tan 0+p0 sin 05, (100) 

@+ - (~ + OPo) cos 05 cos 0 + (~ + 0i0w) sin 6 cos 0 

- ( 4  cos 05-? sin 05)p~ tan 0~-(0 sin 05+? cos 05)/3 0 , 

dPo. 
- a cos 0+  (~ +0/3v) sin 05 sin O+(~+OPw)cos 05 sin 0 

dE 
- ( 4  sin 4)+ ~ cos 05)/3 0 see2 0.  

(101) 

(102) 

The initial and final conditions for these equations, together with the transversality condi- 
tions, are also put in non-dimensional form. 
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6. Method of  Solution 

Consider equations (89)-(102) with given initial conditions on the non-dimensional state 
variables : 

together with final conditions and terminal transversality conditions on these variables. The 
initial conditions represent a steady spinning motion and hence satisfy equations (89)-(95), 
with equations (91), (92) and (93) modified so that appropriate control angles (possibly zero) 
for the steady spin replace -t-~M, t/M, t/,, or -+~M. Equations (89)-(102) cannot be solved 
directly, because we have no information concerning the initial conditions on the adjoint 
variables. 

The metho d of "backing out of the terminal state" is to reverse the time variable in equations 
(89)-(102) by writing 

tR = t l - t .  (103) 

The new time variable tR is the "time to go". Since ~ does not appear explicitly on the right-hand 
sides of the equations, the effect of equation (103) is simply to change d/d~ to d/d~R on the left- 
hand side and reverse the sign of every term on the right-hand side of each equation. For exam- 
ple, equation (89) becomes 

d~ 
d~s = ~ - / 3 ~ - 0  sin q5 cos 0+~v~. (89R) 

The equations with reversed time variable will be described as equations (89R)-(102R). 
The initial conditions on the state variables for these equations will be the same as the final and 
terminal transversality conditions on the state variables for equations (89)-(102): these are 
known. It remains to determine the correct set of initial conditions on the adjoint variables for 
equations (89R)-(102R). 

Note first that any solution of equations (89R)-(102R) satisfying the known initial conditions 
on the state variables will be an optimal solution for the original problem, since it satisfies the 
Pontryagin minimum principle, including the terminal transversality conditions, for this 
problem, i.e. for equations (89)-(102). However, in general, such a solution of equations (89R)- 
(102R) will not satisfy the correct final conditions on the state variables, these, of course, being 
the given initial conditions on the state variables for equations (89)-(102). 

To overcome this difficulty, a search is made in the space of the adjoint variables: different 
sets of initial conditions on the adjoint variables for equations (89R)-(102R) are used until the 
correct (or nearly correct) final conditions are obtained. The required optimal trajectory is then 
the reverse of the trajectory obtained in this way. The method is described in more detail, with 
a numerical illustration, in reference [-13]. 

The time required for a systematic search may be prohibitive; on the other hand it should be 
noted that the only interaction between the state equations (89)-(95) and the adjoint equations 
(96)-(102) is through the control terms in equations (91)-(93), and these terms depend only 
on the signs of pp, pq and Pr. Computation of a few solutions may therefore indicate that the 
initial values chosen for many adjoint variables are not critical, so that the search can be 
confined to a small subset of the adjoint variables. 

7. Conclusions 

The problem of recovering from a steady spin with minimum loss of height may be formulated 
as a problem in optimal control theory, to which the Pontryagin minimum principle can be 
applied. The spin may be represented mathematically in varying degrees of complexity, but 
though it is always possible to formulate the optimisation problem, its solution demands a trial 
and error process which can only be accomplished with an acceptable amount of computation 
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for a small number of state variables. Limited computational experience with the method 
suggests that six or seven state variables are the most that can be used if the search for an optimal 
trajectory is not to be unduly lengthy. 

Apart from the complexity, or otherwise, of the mathematical model, a wide choice of 
initial and final conditions may be postulated. Also, there is no inherent difficulty in representing 
the aerodynamic terms with any desired accuracy. 

Notation 

In general, the aerodynamic notation is based on reference [6], and the optimisation notation 
on reference [10]. 

b~, by, b~ 
CL, CD, C,, 
Czx, Cyx, Cxy 
Czy, Cyz, Cxz 
D 
d~,d,,d~ 
ex, ey, e z 

L.z,,zz 
g 

0 
gx, gy, g~ 
h 
hL 
H 
I~,Iy, I~ 
J~,,Jy, Jz 
l 
L 
L , M , N  
m 

p, q, r 
P,, Pv, etc. 
R 
S 
t 

tR 
tR 
T 
To 
U, V, W 

V 
X , Y , Z  
o~ 

6 
Or 
# 

P 
"c 

~,0,~ 

inertia ratios - (Iy- I~)/I~, - ( I~-  Ix)/Iy, - ( I x -  Iy)/I~ 
lift, drag and pitching moment coefficients L/�89 2, D/�89 2, M/�89 2 
engine momentum parameters Jz/Ix, etc. 

drag 
inertia ratios - Iyz/Ix, - IS Iy ,  - I S I z  
inertia ratios - I~x/I~, - Iz~/Iy, - Iz~/I~ 
inertia ratios - I~SIx, - I~y/Iy, - I~,/I~ 
acceleration due to gravity 
mg/�89 
components of g 
altitude 
height lost 
Hamiltonian 
moments of inertia 
components of angular momentum of engine rotors 
characteristic length of aircraft 
lift 
rolling, pitching and yawing moments 
mass of aircraft 
components of angular velocity 
adjoint variables 
gas constant 
wing area 
time (sec.) 
t/~ 
time to go 
tR/~ 
thrust 
absolute temperature at sea level 
components of velocity 
(u 2 + w27 
components of force 
wing incidence 
temperature gradient in atmosphere 
angle between x-axis and thrust line 
relative density parameter m/�89 
aileron, elevator and rudder angles 
air density 
unit of aerodynamic time m/�89 
bank, attitude and azimuth angles 
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Subscripts ,  etc. 

/3e 
/)' 

/31 

Y~, Lp, etc. 

datum value of v 
increment in v measured from Ve 
final value of v, i.e. v(tl) 
(read "v cap"): dynamic-normalised value of v 
dv/dt 
aerodynamic derivatives ~ Y/~v, ~L/?p, etc. 

N on-dimensionalisation 
Non-dimensional quantities are expressed in dynamic-normalised units, and are obtained as 
follows. 

Define units of mass, length and time as m, #1 and z respectively, and divide each dimensional 
quantity by an appropriate factor depending on its dimensions. In particular, quantities 
representing force and speed are changed to the dynamic-normalised system by dividing by 
1 2 ~peSVe and Ve, respectively. 

The same procedure is applied to aerodynamic stability derivatives, with the additional 
requirements that 
(i) their signs are changed, 
(ii) an inertia parameter is included in the concise form (as used in this paper) of a dynamic- 

normalised moment derivative. 
Thus the concise forms of the aerodynamic stability derivatives Y~ and Lp in dynamic- 

normalised units are 

^ 
Yv - -  1 2 - -  ' 

~ p e S V e / V e  l p e S V  e 

m (#/)2/~/m (#02 - lpe Sl  2 V e i x ' 

The dimensions of the adjoint variables may be deduced from the fact that the Hamiltonian, 
equation (64), has the dimensions of a velocity. 
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